Differentialkvotienten noteres f '(x0). Stregen ' udtales mærke, så differentialkvotienten f '(x0) udtales "f mærke af x0". Differentialkvotienten f '(x0) kaldes også for funktionens væksthastighed i punktet P(x0,f(x0)).
Hvad er x0 i differentialregning?
Definition.
Hvis funktionen f er differentiabel i x0, så kalder vi den rette linje gennem punktet P(x0, f(x0)) med hældningen f '(x0) for tangenten til grafen for f i P.
Hvordan bestemmer man x0?
Hvis vi ønsker at finde hældningen i punktet (x0, f(x0)), så starter vi med at gå et stykke, h, hen ad x-aksen og indtegner punktet (x0+h, f(x0+h)). Vi kan tegne sekanten, s, gennem de to punkter. Man kalder sekanthældningen for differenskvotienten. Differenskvotienten er altså funktionstilvæksten divideret med h.
Hvad er F x_0?
har en grænseværdi for x gående mod x0. Grænseværdien kaldes funktionens differentialkvotient og betegnes dfdx(x0) eller f′(x0).
Hvad sker der når h går mod 0?
h er afstanden mellem de to x-værdier altså xo og x. Når h går mod nul betyder det at afstanden minskes således at den kommer uendeligt tæt på nul.
Differentialkvotient
Hvad er x0?
Differentialkvotienten f '(x0) kaldes også for funktionens væksthastighed i punktet P(x0,f(x0)). Bemærk, at da differentialkvotienten for f i x0 er hældningen på tangenten i P(x0,f(x0)), så findes differentialkvotienten kun, hvis grafen har en tangent i P.
Hvad betyder DX i matematik?
Det sidste udtryk dx er en måde at sige, vi er færdige, og x'et betyder, at x er variablen i udtrykket. Vi kan nu opskrive en definition for ubestemte integraler: Hvis F(x) er en stamfunktion til f(x), kan vi konkludere, at F ( x ) = ∫ f ( x ) dx .
Hvordan bruger man Nulreglen?
Nulreglen siger, at et produkt er nul hvis og kun hvis en af faktorerne er nul. Princippet er, at man først og fremmest faktoriserer ligningen, for derefter at undersøge, hvorvidt det der står uden for parentes, eller det der står inden for parentesen, giver nul. Altså, i dette tilfælde, to nye ligninger.
Hvordan finder jeg f '( 0?
Vi finder ud af, hvor grafen skærer x-aksen ved at udregne f(0), da x-koordinaten for alle punkter på y-aksen er 0. Skal vi udregne dette, må vi dividere med 0, hvilket er umuligt. For at finde hvor grafen skærer x-aksen, må vi løse ligningen f(x) = 0 eller y = 0, for at alle punkter på x-aksen har y-koordinaten 0.
Hvad viser differentialkvotient?
Differentialkvotienten for en funktion f(x) er den funktion der til ethvert x knytter hældningen på tangenten i punktet (x,f(x)) ( x , f ( x ) ) .
Hvad betyder det at en funktion er differentiabel i x0?
Differentiabel funktion betegner en matematisk funktion, hvis differenskvotient har en grænseværdi for x gående mod x0, altså f(x)−f(x0)x−x0. Geometrisk betyder det, at funktionens graf har en tangent i punktet (x0,f(x0)).
Hvad er formålet med differentialregning?
Differentialregning udgør sammen med integralregning den matematiske disciplin der hedder infinitesimalregning. Differentialregningen beskæftiger sig med, hvor meget en såkaldt afhængig variabel ændres, hvis der sker små ændringer i den variabel, den afhænger af, den uafhængige variabel.
Hvad er F X et udtryk for?
Funktion og funktionsforskrift
En funktion er en matematisk beskrivelse af sammenhængen mellem to eller flere variable, fx f(x) = x + 3. Når en variabel y afhænger af en anden variabel x, så siger vi, at y er en funktion af x. Når y er en funktion af x, så skriver vi y = f(x).
Hvad bruges differentialkvotient til?
Differentialregning er med til at bestemme en funktions vækst og hvor meget den vokser på forskellige steder af funktionen, den er altså funktionstilvæksten divideret med ∆x. Differentialkvotienten er den afledte funktion f^' (x) af f(x).
Hvad er hældningen på tangenten?
En tangent til en kurve i et punkt er en ret linje, der approksimerer kurven nær punktet. Hvis kurven er graf for en differentiabel funktion, så er tangentens hældning lig med funktionens differentialkvotient og angiver funktionens væksthastighed i punktet.
Hvad er forskriften på en tangent?
Tangenter er lineære funktioner som vi husker har forskriften f(x)=ax+b f ( x ) = a x + b . Vi kan derfor beskrive tangenten med ligningen y=ax+b.
Er rødder og nulpunkt det samme?
Hvis funktionen afbilder de reelle tal i de reelle tal, kaldes de punkter, hvor funktionens graf skærer x-aksen, for nulpunkter. En funktions rødder er således 1. -koordinater til funktionens nulpunkter, men ofte bruges ordene rødder og nulpunkter synonymt.
Hvad betyder f '( 0 )= 0?
f (0) er y-værdien, når x = 0 , altså punktet (0 ; f (0)) på grafen.
Hvad er forskriften for f?
En lineær funktion er en funktion med forskriften f(x)=ax+b f ( x ) = a x + b , hvor a og b er to reelle konstanter. Tallet a kaldes hældningskoefficienten, eller hældningstallet, eller bare hældningen.
Hvad er Nulpunkts reglen?
Nulreglen fortæller, at hvis et produkt er 0, så er mindst én af faktorerne 0, dvs. at hvis p · q = 0, så er p = 0, q = 0 eller p = 0 og q = 0. Nulreglen fortæller også, at hvis mindst én af faktorerne i et produkt er 0, så er produktet også 0, dvs. at hvis p = 0 eller q = 0, så er p · q = 0.
Hvis diskriminanten er 0?
Diskriminanten kan være positiv, nul eller negativ, og det afgør, hvor mange løsninger der er for den givne andengradsligning.
Hvad betyder det at diskriminanten er 0?
Når diskriminanten er lig med nul
Hvis du udregner diskriminanten d for en andengradsligning og finder frem til, at den er lig med nul, så ved du, at den pågældende ligning kun har en løsning. Du kan finde løsningen for andengradsligningen ved at sætte tallene for a, b og d ind i denne formel.
Hvem har opfundet differentialregning?
Differential- og integralregning (infinitesimalregningen) skabtes af Newton i 1665-66 og G.W. Leibniz i 1675.
Hvad er dy og dx?
Definition af differentialligning
En differentialligning er en ligning, hvori der indgår en ukendt funktion og en eller flere af dens afledede. I differentialligninger benytter vi ofte notationen y frem for f(x) og y' eller dy/dx frem for f '(x).
Er y det samme som dy dx?
Symbolet dx dy betyder det samme som y′.